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Abstract
In this work, the Z3-graded differential geometry of the quantum plane is
constructed. The corresponding quantum Lie algebra and its Hopf algebra
structure are obtained. The dual algebra, i.e. the universal enveloping algebra
of the quantum plane is explicitly constructed.

PACS numbers: 02.20.Uw, 02.10.Hh, 02.40.−k

1. Introduction

After the discovery of the quantum plane by Manin [1], Wess and Zumino [2] developed a
differential calculus on the quantum (hyper) plane covariant with respect to the action of the
quantum group. In their method, the R-matrix is obtained using the consistency conditions.
This leads to a consistent exterior derivative. The purely algebraic properties of these recently
discovered spaces have been deeply discussed. The q-differential algebras have become the
subject of excellent works [3, 4].

The Z3-graded algebraic structures have been introduced by Kerner [5] and studied in [6].
Other studies on the Z3-graded structures can be found in [7]. The de Rham complex with
differential operator d satisfying the Q-Leibniz rule and the condition d3 = 0 on an associative
unital algebra has been constructed by Bazunova et al [8] using the methods of [2]. This
paper considers an alternative approach where, instead of adopting an R-matrix, consistency
conditions on natural commutation relations are used.

The cyclic group Z3 can be represented in the complex plane by means of the cubic roots
of 1: let j = e

2π i
3 (i2 = −1). Then one has

j 3 = 1 and j 2 + j + 1 = 0 or (j + 1)2 = j. (1)

One can define the Z3-graded commutator [A,B] as [3]

[A,B]Z3 = AB − j deg(A) deg(B)BA (2)

where deg(X) denotes the grade of X. If A and B are j -commutative, then we have

AB = j deg(A) deg(B)BA. (3)
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2. Review of Hopf algebra A

The elementary properties of the extended quantum plane are described in [9]. We briefly
state the properties we are going to need in this work.

2.1. The algebra of polynomials on the q-plane

The quantum plane [1] is defined as an associative algebra generated by two noncommuting
coordinates x and y with the relation

xy − qyx = 0 q ∈ C − {0}. (4)

This associative algebra over the complex numbers, C, is known as the algebra of polynomials
over the quantum plane and is often denoted by Cq [x, y]. In the limit q −→ 1, this algebra is
commutative and can be considered as the algebra of polynomials C[x, y] over the usual plane,
where x and y are the two coordinate functions. Below we show that a Z3-graded commutative
differential calculus cannot exist as in the Z2-grade case. We denote the unital extension of
Cq by A.

2.2. Hopf algebra structure on A
The definitions of a coproduct, a counit and a coinverse on the algebra A are as follows
[9, 10]:

(1) The coproduct �A : A −→ A ⊗ A is defined by

�A(x) = x ⊗ x �A(y) = y ⊗ 1 + x ⊗ y (5)

is coassociative:

(�A ⊗ id) ◦ �A = (id ⊗ �A) ◦ �A (6)

where id denotes the identity map on A.
(2) The counit εA : A −→ C is given by

εA(x) = 1 εA(y) = 0. (7)

The counit εA has the property

mA ◦ (εA ⊗ id) ◦ �A = mA ◦ (id ⊗ εA) ◦ �A (8)

where mA stands for the algebra product A ⊗ A −→ A.
(3) If we extend the algebraA by adding the inverse of x then the algebraA admits a C-algebra

antihomomorphism (coinverse) κA : A −→ A defined by

κA(x) = x−1 κA(y) = −x−1y. (9)

The coinverse κA satisfies

mA ◦ (κA ⊗ id) ◦ �A = εA = mA ◦ (id ⊗ κA) ◦ �A. (10)

3. Construction of bicovariant Z3-graded differential calculus on A

The Woronowicz theory [11] is based on the idea that the differential and algebraic structures
of A can coact covariantly on the algebra of its differential calculus over A. We first recall
some basic notions about differential calculus on the extended q-plane.
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3.1. Differential algebra

To begin with, we note the properties of the exterior differential d. The exterior differential d
is an operator which gives the mapping from the generators of A to the differentials

d : a −→ da a ∈ {x, y}.
We require that the exterior differential d has to satisfy two properties

d3 = 0 (11)

and the Z3-graded Leibniz rule

d(fg) = (df )g + j deg(f )(dg). (12)

In order to establish a noncommutative differential calculus including second-order
differentials of the generators of A on the q-plane, we assume that the commutation relations
between the coordinates and their first-order differentials are of the following form:

x dx = A dx x

x dy = C11 dy x + C12 dx y
(13)

y dx = C21 dx y + C22 dy x

y dy = B dy y.

The coefficients A,B and Cik will be determined in terms of the complex deformation
parameter q and j . To find them we shall use the covariance of the noncommutativedifferential
calculus.

Since we assume that d3 = 0 and d2 �= 0, in order to construct a self-consistent theory of
differential forms it is necessary to add to the first-order differentials of coordinates dx, dy a
set of second-order differentials d2x, d2y. Let us begin by assuming that

dx dy = F dy dx (dx)3 = 0 = (dy)3 (14)

where F is a parameter that will be specified later on.
The first differentiation of (13) gives rise to the relations between the generators x, y and

the second-order differentials d2x, d2y including first-order differentials

x d2x = A d2x x + (Aj − 1)(dx)2

x d2y = C11 d2y x + C12 d2x y + K1 dy dx
(15)

y d2x = C21 d2x y + C22 d2y x + K2 dy dx

y d2y = B d2y y + (Bj − 1)(dy)2

where

K1 = jC11 + jC12F − F K2 = jC21F + jC22 − 1. (16)

The relations (15) are not homogeneous in the sense that the commutation relations between
the generators and second-order differentials include first-order differentials as well. In the
following subsection, we shall see that the commutation relations between the coordinates
and their second-order differentials can be made homogeneous. They will not include first-
order differentials by removing them using the covariance of the noncommutative differential
calculus.

Applying the exterior differential d to the relations (15), we get

dx d2x = j−2 d2x dx

dx d2y = j 2C11Q
−1
1 d2y dx + (j 2C12 + F−1K1)Q

−1
1 d2x dy

(17)
dy d2x = j 2C21Q

−1
2 d2x dy + (j 2C22 + K2)Q

−1
2 d2y dx

dy d2y = j−2 d2y dy
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where

Q1 = −j 2(C12 + C11F
−1 + 1) Q2 = −j 2(C22 + C21F + 1). (18)

The differentiation of second or third relations of (17) gives rise to the relations between the
second-order differentials:

d2x d2y = F d2y d2x. (19)

3.2. Covariance

In order to homogenize the relations (15), we shall consider the covariance of the
noncommutative differential calculus. Let � be a bimodule over the algebra A generated
by the elements of the set {x, y, dx, dy, d2x, d2y}. One says that (�, d) is a first-order
differential calculus over the Hopf algebra (A,�A, εA, κA). We start with the definitions of a
left- and right-covariant bimodule.

(1) Let � be a bimodule over A and �R : � −→ � ⊗ A be a linear homomorphism. We
say that (�,�R) is a right-covariant bimodule if

�R(aρ + ρ ′a′) = �A(a)�R(ρ) + �R(ρ ′)�A(a′) (20)

for all a, a′ ∈ A and ρ, ρ ′ ∈ �, and

(�R ⊗ id) ◦ �R = (id ⊗ �A) ◦ �R (id ⊗ ε) ◦ �R = id. (21)

The action of �R on the first-order differentials is

�R(dx) = dx ⊗ x �R(dy) = dy ⊗ 1 + dx ⊗ y (22)

since

�R(da) = (d ⊗ id)�A(a) ∀a ∈ A. (23)

We now apply the linear map �R to relations (13)

�R(x dx) = �A(x)�R(dx) = A�R(dx x)

�R(x dy) = C11�
R(dy x) + C12�

R(dx y) + (qA − C11 − qC12) dx x ⊗ xy

�R(y dx) = C21�
R(dx y) + C22�

R(dy x) + (A − qC21 − C22) dx x ⊗ yx

�R(y dy) = B�R(dy y) + (C12 + C21 − B) dx y ⊗ y + (A − B) dx x ⊗ y2

+ (C11 + C22 − B) dy x ⊗ y,

and relations (14)

�R(dx dy) = F�R(dy dx) + (q − F)(dx)2 ⊗ yx.

So we must have

C11 + qC12 = qA C11 + C22 = B A = B

qC21 + C22 = A C12 + C21 = B F = q.
(24)

(2) Let � be a bimodule over A and �L : � −→ A ⊗ � be a linear homomorphism. We
say that (�,�L) is a left-covariant bimodule if

�L(aρ + ρ ′a′) = �A(a)�L(ρ) + �L(ρ ′)�A(a′) (25)

for all a, a′ ∈ A and ρ, ρ ′ ∈ �, and

(�A ⊗ id) ◦ �L = (id ⊗ �L) ◦ �L (ε ⊗ id) ◦ �L = id. (26)

Since

�L(da) = (id ⊗ d)�A(a) ∀a ∈ A (27)
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the action of �L on the first-order differentials gives rise to the relations

�L(dx) = x ⊗ dx �L(dy) = x ⊗ dy. (28)

Applying �L to relations (13), we get

C12 = 0 C21 = q−1 B = q−1. (29)

With the relations (24), we then obtain

A = q−1 C11 = 1 C21 = q−1

B = q−1 C12 = 0 C22 = q−1 − 1.
(30)

So

K1 = j − q K2 = q−1(j − q) Q1 = −j 2(q−1 + 1) = Q2.

On the other hand, since the differential of a function f of the coordinates x and y is of
the form

df = (dx∂x + dy∂y)f (31)

and

d2f = (
d2x∂x + d2y∂y + j (dx)2∂2

x + j (dy)2∂2
y + dx dy(∂x∂y + q∂y∂x)

)
f

d3f = d2x dy

(
j 2∂y∂x + q−1j∂x∂y +

1 − jq−1

q + 1
∂x∂y +

q − j

q + 1
∂y∂x

)
f

+ d2y dx

(
j 2∂x∂y − j 2

q + 1
∂x∂y − 1

q + 1
∂y∂x

)
f + · · ·

= j 2

q + 1
d2x dy(∂y∂x − ∂x∂y) +

1

q + 1
d2y dx(qj 2∂x∂y − ∂y∂x)f + · · ·

≡ 0

we have

∂x∂y = ∂y∂x (32)

if q satisfies the identities

qj 2 = 1 q2 + q + 1 = 0. (33)

One can then choose

q = j−2 = j. (34)

Consequently, the relations (13)–(15), (17) and (19) are explicitly as follows: the commutation
relations between the coordinates and their first-order differentials are [12]

x dx = q−1 dx x x dy = dy x
(35)

y dx = q−1 dx y + (q−1 − 1) dy x y dy = q−1 dy y

and among those first-order differentials are

dx dy = q dy dx (dx)3 = 0 = (dy)3. (36)

The commutation relations between variables and second-order differentials are

x d2x = q−1 d2x x x d2y = d2y x
(37)

y d2y = q−1 d2y y y d2x = q−1 d2x y + (q−1 − 1) d2y x.
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The commutation relations between first-order and second-order differentials are

dx d2x = q−2 d2x dx dx d2y = q2 d2y dx
(38)

dy d2y = q−2 d2y dy dy d2x = q−2 d2x dy + (q − q−1) d2y dx

and those among the second-order differentials are

d2x d2y = q d2y d2x. (39)

Now, it can be checked that the linear maps �R and �L leave invariant the relations
(35)–(39). One can also check that the identities (21), (26) and also the following identities
are satisfied:

(id ⊗ d)�A(a) = �L(da) (d ⊗ id)�A(a) = �R(da) (40)

and

(�L ⊗ id) ◦ �R = (id ⊗ �R) ◦ �L. (41)

4. Cartan–Maurer one-forms on A

In analogy with the left-invariant one-forms on a Lie group in classical differential geometry,
one can construct two one-forms using the generators of A as follows [9]:

θ = dx x−1 ϕ = dy − dx x−1y. (42)

The commutation relations between the generators of A and one-forms are [9]

xθ = q−1θx yθ = q−1θy + (q−1 − 1)ϕ

xϕ = ϕx yϕ = ϕy.
(43)

The first-order differentials with one-forms satisfy the following relations

θ dx = q dx θ ϕ dx = dx ϕ
(44)

θ dy = q dy θ ϕ dy = dy ϕ

and with second-order differentials

θ d2x = q2 d2x θ θ d2x = q2 d2x θ
(45)

ϕ d2x = q−2 d2x ϕ ϕ d2y = q−2 d2y ϕ.

The commutation rules of the elements θ and ϕ are

θ3 = 0 θϕ = ϕθ (46a)

and

ϕ3 = 0 (46b)

provided that q2 + q + 1 = 0.

We denote the algebra of the forms generated by the two elements θ and ϕ by 
. We
make the algebra 
 into a Z3-graded Hopf algebra with the following co-structures [9]: the
coproduct �
 : 
 −→ 
 ⊗ 
 is defined by

�
(θ) = θ ⊗ 1 + 1 ⊗ θ �
(ϕ) = ϕ ⊗ 1 + x ⊗ ϕ − y ⊗ θ. (47)

The counit ε
 : 
 −→ C is given by

ε
(θ) = 0 ε
(ϕ) = 0 (48)

and the coinverse κ
 : 
 −→ 
 is defined by

κ
(θ) = −θ κ
(ϕ) = −q−1ϕx−1 − θx−1y. (49)

One can easily check that (6), (8) and (10) are satisfied. Note that the commutation relations
(43)–(46) are compatible with �
, ε
 and κ
, in the sense that �
(xθ) = q−1�
(θx), and
so on.
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5. Quantum Lie algebra

The commutation relations of Cartan–Maurer forms allow us to construct the algebra of the
generators. In order to obtain the quantum Lie algebra of the algebra generators we first write
the Cartan–Maurer forms as

dx = θx dy = ϕ + θy. (50)

The differential d can then be expressed in the form

d = θH + ϕX. (51)

Here H and X are the quantum Lie algebra generators. We shall now obtain the commutation
relations of these generators. Considering an arbitrary function f of the coordinates of the
quantum plane and using that d3 = 0 one has

d2f = d θHf + dϕXf + jθ dHf + jϕ dXf

and

d3f = d2θHf + d2ϕXf + j 2 dθ dHf + j 2 dϕ dXf + j 2θ d2Hf + j 2ϕ d2Xf.

So we need the two-forms. Applying the exterior differential d to the relations (42) one
has

dθ = d2x x−1 − jθ2

(52)
dϕ = d2y − d2x x−1y − jθϕ.

Also, since

θ dθ = q−2 dθ θ

θ dϕ = q2 dϕ θ + (q − q−1) dθ ϕ + (q−1 − q)θ2ϕ
(53)

ϕ dθ = q−2 dθ ϕ + (q−1 − q)θ2ϕ

ϕ dϕ = q−2 dϕ ϕ + (q−1 − q)θϕ2

we have

d2θ = 0 d2ϕ = j dθ ϕ − j dϕ θ − jθ2ϕ. (54)

Using the Cartan–Maurer equations we find the following commutation relation for the
quantum Lie algebra

XH = q−1HX + X. (55)

The commutation relation (55) of the algebra generators should be consistent with the
monomials of the coordinates of the quantum plane. To do this, we evaluate the commutation
relations between the generators of algebra and the coordinates. The commutation relations
between the generators and the coordinates can be extracted from the Z3-graded Leibniz rule

d(xf ) = (dx)f + x(df )

= θ(x + q−1xH)f + ϕ(xX)f

= (θH + ϕX)xf (56)

and

d(yf ) = (dy)f + y(df )

= θ(y + q−1yH)f + ϕ(1 + yX + (q−1 − 1)H)f

= (θH + ϕX)yf. (57)
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This yields

Hx = x + q−1xH Hy = y + q−1yH
(58)

Xx = xX Xy = 1 + yX + (q−1 − 1)H.

We know that the differential operator d satisfies the Z3-graded Leibniz rule. Therefore,
the generators H and X are endowed with a natural coproduct. To find them, we need the
following commutation relation

Hxm = 1 − q−m

1 − q−1
xm + q−mxmH (59a)

and

Hyn = 1 − q−n

1 − q−1
yn + q−nynH (59b)

where (58) was used. The relation (59a) is understood as an operator equation. This implies
that when H acts on arbitrary monomials xmyn,

H(xmyn) = 1 − q−(m+n)

1 − q−1
(xmyn) + q−(m+n)(xmyn)H (60)

from which we obtain

H = 1 − q−N

1 − q−1
(61)

where N is a number operator acting on a monomial as

N(xmyn) = (m + n)xmyn. (62)

We also have

X(xmyn) = (xmyn)X +
1 − q−n

1 − q−1
xmyn−1(1 + (q−1 − 1)H). (63)

So, applying the Z3-graded Leibniz rule to the product of functions f and g, we write

d(fg) = [(θH + ϕX)f ]g + f (θH + ϕX)g (64)

with the help of (51). From the commutation relations of the Cartan–Maurer forms with the
coordinates of the quantum plane, we can compute the corresponding relations of θ and ϕ

with functions of the coordinates. From (43) we have

(xmyn)θ = q−(m+n)θ(xmyn) + (q−n − 1)ϕxmyn−1 (xmyn)ϕ = ϕ(xmyn). (65)

Inserting (65) into (64) and equating coefficients of the Cartan–Maurer forms, we get, for
example,

H(fg) = (Hf )g + q−Nf (Hg). (66)

Consequently, we have the coproduct

�(H) = H ⊗ 1 + q−N ⊗ H
(67)

�(X) = X ⊗ 1 + 1 ⊗ X + (q−1 − 1)X ⊗ H.

The counit and coinverse may be calculated by using the axioms of Hopf algebra

m(ε ⊗ id)�(u) = u m(id ⊗ κ)�(u) = ε(u). (68)

So we have

ε(H) = 0 = ε(X) (69)

κ(H) = −qNH κ(X) = −XqN. (70)
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6. The dual of the Hopf algebra A

In this section, in order to obtain the dual of the Hopf algebra A defined in section 2, we shall
use the method of [13].

A pairing between two vector spaces U and A is a bilinear mapping 〈,〉: U × A −→ C,

(u, a) �→ 〈u, a〉. We say that the pairing is non-degenerate if

〈u, a〉 = 0(∀a ∈ A) �⇒ u = 0

and

〈u, a〉 = 0(∀u ∈ U) �⇒ a = 0.

Such a pairing can be extended to a pairing of U ⊗ U and A ⊗ A by

〈u ⊗ v, a ⊗ b〉 = 〈u, a〉〈v, b〉.
Given bialgebras U and A and a non-degenerate pairing

〈,〉: U × A −→ C (u, a) �→ 〈u, a〉 ∀u ∈ U ∀a ∈ A (71)

we say that the bilinear form realizes a duality between U and A, or that the bialgebras U and
A are in duality, if we have

〈uv, a〉 = 〈u ⊗ v,�A〉
〈u, ab〉 = 〈�U (u), a ⊗ b〉 (72)

〈1U , a〉 = εA(a)

〈u, 1A〉 = εU (u)

for all u, v ∈ U and a, b ∈ A.
If, in addition, U and A are Hopf algebras with coinverse κ , then they are said to be in

duality if the underlying bialgebras are in duality and if, moreover, we have

〈κU (u), a〉 = 〈u, κA(a)〉 ∀u ∈ U a ∈ A. (73)

It suffices to define the pairing (71) between the generating elements of the two algebras.
Pairing for any other elements of U and A follows from relations (72) and the bilinear form
inherited by the tensor product. For example, for

�U(u) =
∑

k

u′
k ⊗ u′′

k

we have

〈u, ab〉 = 〈�U (u), a ⊗ b〉 =
∑

k

〈u′
k, a〉〈u′′

k , b〉.

As a Hopf algebraA is generated by the elements x, y and a basis is given by all monomials
of the form

f = xmyn

where m,n ∈ Z+. Let us denote the dual algebra by Uq and its generating elements by
A and B.

The pairing is defined through the tangent vectors as follows:

〈A, f 〉 = mδn,0
(74)

〈B, f 〉 = δn,1.

We also have

〈1U , f 〉 = εA(f ) = δn,0. (75)
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Using the defining relations one gets

〈AB, f 〉 = (m + 1)δn,1 (75a)

and

〈BA, f 〉 = mδn,1 (75b)

where differentiation is from the right as this is most suitable for differentiation in this basis.
Thus one obtains the commutation relation in the algebra Uq dual to A as

AB = BA + B. (76)

The Hopf algebra structure of this algebra can be deduced by using the duality. The coproduct
of the elements of the dual algebra is given by

�U(A) = A ⊗ 1U + 1U ⊗ A
(77)

�U(B) = B ⊗ qA + 1U ⊗ B.

The counity is given by

εU (A) = 0 εU (B) = 0. (78)

The coinverse is given as

κU(A) = −A κU (B) = −Bq−A. (79)

We can now transform this algebra to the form obtained in section 5 by making the
following definitions:

H = 1U − qA

1 − q−1
X = B (80)

which are consistent with the commutation relation and the Hopf structures.

7. Conclusion

To conclude, here we introduce the commutation relations between the coordinates of the
quantum plane and their partial derivatives and thus illustrate the connection between the
relations in section 5, and the relations which will now be obtained.

To proceed, let us obtain the relations of the coordinates with their partial derivatives. We
know that the exterior differential d can be expressed in the form

df = (dx ∂x + dy ∂y)f. (81)

Then, for example,

d(xf ) = dx f + x df

= dx(1 + q−1x∂x)f + dy x∂yf

= (dx ∂xx + dy ∂yx)f

so that

∂xx = 1 + q−1x∂x ∂xy = q−1y∂x
(82)

∂yx = x∂y ∂yy = 1 + q−1y∂y + (q−1 − 1)x∂x.

The Hopf algebra structure for ∂ is given by

�(∂x) = ∂x ⊗ ∂x �(∂y) = ∂y ⊗ 1 + ∂x ⊗ ∂y

ε(∂x) = 1 ε(∂y) = 0 (83)

κ(∂x) = ∂−1
x κ(∂y) = −∂−1

x ∂y

provided that the formal inverse ∂−1
x exists.
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We know from section 5 that the exterior differential d can be expressed in the form (51),
which we repeat here

df = (θH + ϕX)f. (84)

Considering (81) together with (84) and using (50) one has

H ≡ x∂x + y∂y X ≡ ∂y. (85)

Using the relations (82) and (32) one can check that the relation between the generators in
(85) coincides with (55). It can also be verified that the action of the generators in (85) on the
coordinates coincides with (58).

We finally introduce complex notation with a single variable z = x + iy where x and y are
the generators of the q-plane and i2 = −1. Then the elements

z z̄ = x − iy dz = dx + i dy dz̄ = dx − i dy (86)

form the basis in the algebra �. These elements obey the following commutation relations:

z dz = q−1 dz z (z̄ dz̄ = q−1 dz̄ z̄)

z d2z = q−1 d2z z (z̄ d2z̄ = q−1 d2z̄ z̄)
(87)

dz d2z = q−2 d2z dz (dz̄ d2z̄ = q−2 d2z̄ dz̄)

(dz)3 = 0 = (dz̄)3.

Note that these relations are the same as those of [14] except that in our case z3 need not be
zero.

The Z3-graded noncommutative differential geometry we have constructed satisfies all
expectations for such a structure. In particular, all Hopf algebra axioms are satisfied without
any modification.
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